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Abstract. A potential harmonic method that is suitable
for the three-body coulomb systems is presented. This
method is applied to solve the three-body Schroedinger
equations for He and eTe~e™ directly, and the calcula-
tions yield very good results for the energy. For example,
we obtain a ground-state energy of —0.26181 hartrees
for ete"e™, and —2.90300 hartrees for He with finite
nuclear mass, in good agreement with the exact values of
—0.26200 hartrees and —2.90330 hartrees. Compared
with the full-set calculations, the errors in the total
energy for ground and excited states of eTe~e™ are very
small, around —0.0001 hartrees. We conclude that the
present method is one of the best PH methods for the
three-body coulomb problem.
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1 Introduction

The potential harmonics (PHs) are those hyperspherical
harmonics (HHs) that appear in the expansion of the
product of the potential and the dominant term
occurring in the expansion of the wavefunction. Fabre
de la Ripelle [1, 2, and the references therein] found that
these harmonics (or PHs) are the ones which contribute
most importantly to the wavefunction, and in some test
cases there is only a small loss in accuracy by using the
PH basis instead of the full HH basis. PHs are specific
linear combinations of HHs with the same global
angular momentum (K). In the simplest case, only one
PH is obtained for each value of K, and the degeneracy
of HHs at large K is very high; thus the PH method is
very efficient in reducing the number of HHs used in the
expansion. This removes one of the main impediments
that has seriously hindered the HH technique from
further applications [1-4].
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Several years ago, Fabre de la Ripelle et al. [4] pro-
posed a PH method which was believed to be able to
include e-e correlations into the basis effectively, and
showed that this PH method was the most accurate and
gave the best results in their test cases involving helium
and H™. However, when they introduced their method,
Fabre de la Ripelle et al. [4] used a mathematical for-
malism which was only suitable for two-electron atomic
systems, such as helium and H™ where the mass of the
nucleus was treated as infinite.

The main purpose of the present paper is to establish a
PH method that is suitable for the general three-body
coulomb systems and at the same time, can match the
performance of the new PH method of Fabre de Ila
Ripelle et al. [4] in the particular case of He(H™). In our
method, two sets of orthonormal PH basis functions are
constructed and used in the expansion of the wavefunc-
tion; analytic expressions for matrix elements with these
PH functions are derived. Finally the generalized Lagu-
erre function (GLF) expansion method, which was re-
cently developed by Deng and others [5-8], is used in the
solution of the coupled differential equations. Programs
based on this method have been successfully implemented
and the calculations for He atom and positronium ion
ete et have yielded very good results for the energy.

A detailed presentation of our method is given in the
next section, and the practical calculations are reported
in Sect. 3.

2 Theoretical method
2.1 Solution of the Schroedinger equation

The nonrelativistic Schroedinger equation for the gen-
eral three-body coulomb problem can be written as
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where V' is the coulomb potential and m; is the mass of
particle i. Consider a system with two identical particles;
in particles we assume that particles 1 and 2 are
identical, and m; = my = m.




In the center-of-mass system, Eq. (1) has the form
(9, 10]
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where we used the units m = = e = 1; M is the mass of
the unidentical particle; r; is the position vector of the
particle i; ¢ and & are relative coordinate vectors.

For the S state (L = 0), ¢ and & can be expressed in
terms of hyperspherical coordinates by the relations
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where p(0 < p <oo) is the hyperradial variable;

a(0 <a<7%),and A(0 < /4 < 2m) are two hyper-angles.
In these hyperspherical variables, Eq. (2) takes the
form
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where V=—-22 Q stands for the hyperangular

variables a, andp/l A? is the generalized scalar angular-
momentum operator and for L =0,
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Now we expand ¥ in terms of two sets of PH basis
functions, which are denoted by Y/ (4, @) and Y (4, a)
(the definitions and derivations about them are glven in

Sect. 2.2):
Y= Ol 0+ ek 0
"

The number of PH functions for the first set is denoted
as N;, and that for the second set is denoted as N,. We
assume N is the total number of PH functions; then
N = N, + N,.Y,(A,a) are solutions (for the S states) of
the equation:

A’Y,(2, a) = 2u(2u + 4)Y,
=K(K +4)Y,

YA)a

W a) (i =0,1,2, )
(% a)(K = 2p) (8)
and thus can be expressed in terms of the usual Wigner D

functions (D!, (x, B,7)). Equation (7) can be written in
the matrix form:
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¥ =Y'0' +YOF | 9)

where Y? and Y2 are N;- and N,-dimensional line
matrices respectively, whereas ®' and ®° are N;- and
N,-dimensional column matrices respectively. We fur-
ther let

Y = (Y4, Y?) (10)
and

@
0= <®B> . (11)
Then Eq. (9) can be rewritten as:
¥Y=Y0O , (12)

where Y is the N-dimensional line matrix, and @ is the
N-dimensional column matrix.

After substituting Eq. (12) into Eq. (5) and integrat-
ing out the hyperangular part of the wavefunction, we
can obtain a matrix equation:

[dz 5d (K+4)

— 1220k 0=0, 13
dp*>  pdp p? p (13)

where K is N x N diagonal matrix, with the diagonal
elements being 2u for the preceding N; elements and 24/
for the following N, elements; N is the number of PHs
used (as mentioned above); Z is N x N matrix,

7 — (ZAA ZAB)

Zpy Zpp)
The matrix elements for Z,4, Z,p, Zg4, Zgp are the
following angular integration respectively:

Ly = (YHZ(Q)|YS) (
ZB,uB,u’ = <Y# |Z( |YB> s (
Ly = (Y 1Z(Q)Y) (17
Ly = (Y 1Z(Q)Yy) (

and the analytic expressions for them are derived out in
Sect. 2.3. Now we let

(14)

O=clo (19)
and
B> = —2E (20)
Substitution of Eq. (19) into Eq. (13) yields

2
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We define
R=2fp . (22)
Then we have
Z_5
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We expand ®(R) in terms of generalized Laguerre
functions (GLF) [5, 6]

A

n=0

(we choosea = 4) , (24)

where C, is the column matrix of expansion coefficients,
and L%(R) is the generalized Laguerre function.
By using the following properties of the GLF,

&2 (5 d nl] .
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we can finally get the recurrence relation of the
expansion coefficients:

a(C,,)C,, + a(C,H])CH] + a(C,,,l)Cn,l =0 (26)
where

a(C,) = K(K + 4) @n+$<%—n—§>

a(Cpy1) = (n+59) (? —n— ;)

a(C,_1) :n(%—n—%> . (27)

From Eq. (26), a generalized eigenvalue equation about
p can be easily obtained,

AC = BC | (28)
in which

Ay =—-02n+95Z

Appr1 = (n+35)Z

Apn1 =nZ | (29)

B = KO8 2019 (0 )

7
B,,1=(n+5) (n + 5)
3
B,,—1=n (n + 5) , (30)

(n=20,1,---, and the other elements of A and B are
zero), and C is a M-dimensional column matrix; A, B are
M x M square matrices; M = N (the number of PHs)
x NGLF (the number of GLF). Equation (28) is solved
numerically and thereby the wavefunction and the
energy eigenvalue are obtained.

2.2 PH basis sets

The two sets of PH basis functions, ¥,/ and Y [or
Y/ (%, a) and Y}(2,a)], used in the expansmn of the
wavefunction in Eq (7) are obtained in the following
way.

The interaction potential for the three-body coulomb
systems considered in this paper is written as

y- 2 _ = =z 1 (31)

Here, z is the nuclear charge and r;; is the distance
between particles, which can be expressed with the
hyperspherical coordinates [10]:

rij = p\/k,:,(l +sin acos(A + wy)) , (32)
where  k;; = 1, Ml Ml and  w; =0, 0, —»  with

w = arccos -, for ij = 12, 23, 13 respectlvely

M+l’
Based on Eq.(32), the following expansion formula
can be obtained [10]:
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where D! (o, B,7) are usual Wigner D functions.
From Eq. (33), we define the PH function for the
interparticle potential - as
ij

Yi(ij) = D (=1)F exp(—io;v) g%(2l,2a 0) . (34
V=—U

Then
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The Pauli exclusion principle requires that the wave-
function be antisymmetric under interchange of the two
identical particles, and thus we can obtain two sets of
PH functions for the 'S state from Eq. (34), which satisfy
the Pauli principle:

v =7v,(12) , (36)
Y =Y (13423) . (37)
Here we let

V(13 +23) = ¥,(13) + ¥;(23) . (38)

By using Eq. (34) we can further obtain
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Y,(12) = Y (~1)7D;

V=—n

(27,2a,0) |, (39)

s —v I3
YVi(13423) = > (~1)72cos wvD;

V=—u

On the basis of Eq. (36) and Eq. (37), we have con-
structed another two sets of PH bases, which are

orthogonal to each other, by the method of Gram-
Schmidt:

v =v(12) , (41)

Y% = a,Y,(12) + Y;(13 + 23)

(1t # 0,1 and for the particular case M = oo, u # 0, 0dd)
(42)

(22,2a,0) . (40)

2
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with

2C (cos »
a, = _M , (43)
u+1
where C!(cos ) is the Gegenbauer polynomial. Ylf" and
Y, B can be easily normalized by the angular integration
procedure and finally we obtain the two sets of
orthonormal PH bases:

_3
vi=nydt (44)
Y/B
B __ M
Y, = N_f (45)
with

| 2
C,(cosw)

N C,\(cos2m) -
u+1
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2.3 Analytic expressions for Z-matrix elements

Firstly, let us consider some angular integration fromula
with three PH basis functions. Let

Li(p, ' 1)
- <Yl§(13 +23)

Y. (13 +23)|,

(13+23)> (47)

with the integration being taken over
2
dQ = Zsin 2add(2a) . (48)

Substitution of Eq. (40) into Eq. (47) leads to
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"

i i’ u D
= 2
VE=— Uy =— ! VI =— !
[ il I
8 cos mv cos wv' cos mv” <D§% D} ,|D} > . (49)
2 777 172
According to formula [11]
o 12}
D / 2 /
ulhnh
22 22
-5 (& IR VIRIESS
\1+‘7‘1*‘z 27227212 2
w=lm | T
Vi vy | s VitV
S As A A | A 50
(2 2202 |2 ) (50)

where the (I,m,!’,m'|l", m") are the Clebsch-Gordan
coefficients of su (2) group, and
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Thus, Eq. (49) can be further written as
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Similarly we achieve
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Io(p, p, 1) = <Y/i(13 +23)
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Now, let us consider the Z-matrix. As mentioned in Sect.

. . 2y Zyp
2.1, Z is N x N matrix:
<ZBA Zpp

elements for Z,4, Z4p, Zg4, Zpg are the following
angular integrations respectively:

2’2727 2

) and the matrix

Ly = (YZ(Q)Y]) | (61)
23y = <Yf|Z(Q)‘Y,?> ) (62)
ZAuBu’ = <Y;|Z(Q>‘Y£> ’ (63)
Zuaw = (V212(Q)|75) - (64)

Here, the integration is taken over dQ [See Eq. (48)].
From Eq. (31) and Eq. (35), we get

Z(Q)_iBﬂ[a(z,M)Y;(l3+23)—LYé(lz) . (65)

#=0 V2
where
_ le(=D)"(u+1)
P rQuA43)2u+1) (66)
a(z, M) = = MLH . (67)

Based on the integration formula in Egs. (53)—(60), the
explicit expressions for Egs. (61)-(64) can be derived,
and finally we obtain:
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Additionally, by making use of the symmetry of the
Z-matrix, we obtain

ZBM’A;L = ZA,uBu’ . (71)

Is(u, i, u”)] : (70)

3 Results and discussion

We have performed practical calculations on some three-
body coulomb systems with the method described above.
All calculations were carried out on a 4D/25 Personal
Iris Silicon Graphics workstation in our laboratory. The
programs were written by us.

Some of our calculational results at different p,, are
summarized in Tables 1-4, where p is the quantum
number used to denote the PH basis sets in Sect. 2 and
W, 1s the maximum value of it, and we have p,, = ’% [see
Eq. (8), K, is the maximum global angular momentum].
The unit of energy we used is E;, which is the abbre-
viation for the hartree and 1 E;, = 27.2116¢eV .

Now consider Table 1, where we present our calcu-
lated results for the ground and the first excited states of
the He atom along with the results obtained by Fabre de
la Ripelle et al. with their PH method with e-e correla-
tions [4]. In both methods, the mass of the nucleus is
treated as infinite. The left two columns in the table are
for the ground state, and the right two are for the first
excited state. The accurate variational results are also
placed in the table for comparison. To achieve conver-
gence, we retain five generalized Laguerre functions for



the ground-state calculations and ten for the first excited
state calculations. One can see from Table 1 that, for the
ground state, our results are almost the same as those
from [4], and for the first excited state, the two sets of
results are very similar to each other, particularly at
lower ,,. The comparison validates our method, and we
conclude that our method is of the same accuracy as the
PH method with e-e correlations of Fabre et al. [4] for
the case of helium with infinite nuclear mass.

Table 1. Comparison of energy eigenvalues (Ej;) of He atom with
infinite nuclear mass calculated by our method with those obtained
by Fabre

1, Fabre® us® Fabre® usd
(ground-state) (2'S state)

8 —2.88730 —2.88732  —1.94728  —1.94729
10 —2.89333 —2.89334  —1.99412  —1.99421
14 —2.89876 —2.89876  —2.05111  —2.05113
16 —2.90006 —2.90006  —2.06896  —2.06898
20 —2.90152 —2.90152  —2.09313  —2.09316
24 —2.90226 —2.90226 —2.10815 —2.10816
28 —2.90267 —-2.90267  —2.11799  —2.11769
32 —2.90291 —2.90291  —2.12471  —2.12461
36 —2.90307 —2.90307  —2.12946  —2.12923
Variational® —2.90372 —2.14597

U, = ” , and K, is the maximum global angular momentum

b Results calculated by Fabre de la Ripelle with their PH method [4]
¢ Our calculated results with five generalized Laguerre functions

4 Our calculated results with ten generalized Laguerre functions

¢ From Refs. [12-14]

Table 2. Energy eigenvalues of the ground-state for He with finite
nuclear mass (M = 7.2942988 x 103)(E;)

NGLF®
1 1 3 6 7

4 —2.82896 —2.84959 —2.84960 —2.84960
10 —2.85477 —2.89276 —2.89294 —2.89294
16 —2.85789 —2.89933 —2.89965 —2.89965
24 —2.85882 —2.90144 —2.90185 —2.90185
36 —-2.85914 —2.90221 —2.90265 —2.90265
50 —2.85924 —2.90244 —2.90290 —2.90290
70 —2.85928 —2.90253 —2.90299 —2.90300
Exact value® —2.90330

*u,, ==, and K,, is the maximum global angular momentum
® The number of generalized Laguerre functions
¢ From Ref. [15]
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We report our calculations on the ground and the
first excited states (2'S state) of helium atom with finite
nuclear mass (M = 7.2942988 x 10°m,) in Table 2 and
Table 3 respectively. The convergency pattern of energy
eigen values versus y, and NGLF (the number of gen-
eralized Laguerre functions) is displayed. From Table 2
we see that the ground-state energy eigenvalues for
NGLF = 6 are almost the same as those for NGLF =7,
which indicates fast and satisfactory convergence for the
Laguerre expansion; the eigenvalues increase steadily
with p,, and at u,, = 70 and with seven GLFs, we get an
energy eigenvalue of —2.90300F), which is in excellent
agreement with the exact value of —2.90330E}, reported
by Morgan III et al. [15]. On the other hand, Table 3
shows us that, compared with the ground-state, more
GLFs are required to obtain good convergence for the
excited state. At u,, = 70 and with ten GLFs, we get an
energy value of —2.14127E;, which is very near Drake’s
result of —2.14568E, [16].

Our energy results for the ground and the first excited
states of eTe~e™ are displayed in Table 4. We notice that
the convergence pattern is rather good, and compared
with our calculations on He mentioned above, more
GLFs are required to obtain good convergence. For the
ground state, excellent convergence is obtained when the
number of GLFs is extended to ten, and at u,, = 65 and
with ten GLFs, we obtain a ground-state energy of
—0.26181E},, which is in good agreement with the exact
value of —0.26200F),, which was obtained by Frost
et al.[17] with the variational method. The convergence
for the first excited state is good too, particularly at
lower u,, and at yu, = 65 and with ten GLFs, we get a
energy value of —0.24175E,, but we could not find any
results in the literature for this value.

To make a clear comparison, our results for ete e™
using the full HH basis set (FS) for each g, i.e., all
harmonics for u < u,, are retained, are also included in
Table 4. These results are obtained by the HH-GLF
method [7], which was shown to be as accurate as the
best available hyperspherical harmonic method. The
errors between the PH results and the FS (full HH set)
ones are listed in the last column of Table 4. We can see
that the errors are very small, at around —0.0001E, for
both the ground and excited states. Furthermore, the
error for the ground-state almost remains constant with
the increase of y,,, and the error for the first excited state
decreases with u,. This suggests that the error mainly
comes from the neglect of harmonics at lower y,,. The
PH calculations performed by Haftel and Mandelzweig

Table 3. Energy eigenvalues of

b
the 2!S state for He with finite NGLF
2lic(lgii(rE$ass (M = 7.2942988 @ : 3 5 - 9 10

4 —0.52088 —1.76320 —1.77083 —1.77084 —1.77083 —1.77083
10 —0.54081 —1.91990 —1.99130 —1.99389 —1.99391 —1.99392
16 —0.54445 —1.95001 —2.05632 —2.06817 —2.06869 —2.06869
ay, =% and K,, is the max- 24 —0.54565 —1.96043 —2.08354 —2.10518 —2.10773 —2.10785
imum global angular 36 —0.54610 —1.96437 —2.09494 —2.12299 —2.12838 —2.12893
momentum 50 —0.54623 —1.96558 —2.09864 —2.12924 —2.13631 —2.13727
> The number of generalized 70 —0.54628 —1.96607 —2.10022 —2.13202 —2.14001 —2.14127
Laguerre functions Exact valueS —2.14568

¢ From Ref. [16]
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Table 4. Energy eigenvalues of

b
ete et (Ey) NGLF
w 3 5 7 9 10 FS° errord
For the ground-state
5 —0.24660 —0.24661 —0.24661 —0.24661 —0.24661 —0.24671 —0.00010
10 —0.25615 —0.25660 —0.25660 —0.25660 —0.25660 —0.25672 —0.00012
14 —0.25815 —0.25901 —0.25904 —0.25904 —0.25904 —0.25916 —0.00012
18 —0.25897 —0.26013 —0.26019 —0.26019 —0.26019 —0.26031 —0.00012
24 —0.25947 —0.26086 —0.26098 —0.26099 —0.26099 —0.26111 —0.00012
36 —0.25977 —-0.26134 —-0.26153 —0.26155 —0.26155
50 —0.25986 —0.26149 —0.26171 —0.26174 —0.26174
65 —0.25989 —0.26155 —-0.26178 —0.26181 —0.26181
@ 1, =%, and K,, is the max- Exact value® —0.26200
imum global angular For the 2'S state
rbnomentum . 5 —-0.17025 —-0.17374 —-0.17374 —-0.17374 —0.17374 —0.17387 —0.00013
The number of generalized 10 —0.18694 —0.20385 —0.20508 —0.20510 —0.20510 —0.20522  —0.00012
Laguerre functions . 14 —0.19036  —0.21326 —0.21711 —0.21734 —0.21734 —0.21743  —0.00009
¢ The full-set calculational re- 18 —0.19176  —0.21775 —0.22403 —0.22492 —0.22495 —0.22503  —0.00008
sults with 10 generalized 24 —0.19261  —0.22074 —0.22934 —0.23149 —0.23173 —0.23179  —0.00006
(Iraguerr‘e functions 36 —0.19313  —0.22270  —0.23327 —0.23719 —0.23802
The difference between the PH 50 —0.19329  —0.22333  —0.23464 —0.23942  —0.24066
results and full-set ones 65 —0.19335  —0.22356 —0.23515 —0.24030 —0.24175
¢ From Ref. [17]
[3] produced the ground-state energy of —0.22101E), at  References
K,, = 12 for the eTe~e™, which has a huge error com-
pared with the full set result of —0.25040F}, [3]. In con- 1. Fabre de la Ripelle M (1982) Ann Phys 138:275
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Our calculations indicate that the PH method provides
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Acknowledgements. This work was supported by the National
Natural Science Foundation of the People’s Republic of China
(Grant No. 29503019).

Sov J Nucl Phys 12:109

. Haftel MI, Mandelzweig VB (1989) Ann Phys 189:29; 195:420
. Edmonds AR (1960) Angular momentum in quantum mechan-

ics. Princeton University Press, Princeton

. Drake GWF, Yan ZC (1994) Chem Phys Lett 229:486
. Kleindienst H, Luechow A, Merckens HP (1994) Chem Phys

Lett 218:441

. Kleindienst H, Emrich R (1990) Int J Quantum Chem 37:257
. Morgan III JD, Baker J (1987) Bull Am Phys Soc 32:1245

. Drake GWF (1988) Nucl Instrum Methods Phys Res B 31:7
. Frost AA, Inokuti M, Lowe JP (1964) J Chem Phys 41:482



