
Abstract. A potential harmonic method that is suitable
for the three-body coulomb systems is presented. This
method is applied to solve the three-body Schroedinger
equations for He and e�eÿe� directly, and the calcula-
tions yield very good results for the energy. For example,
we obtain a ground-state energy of ÿ0:26181 hartrees
for e�eÿe�, and ÿ2:90300 hartrees for He with ®nite
nuclear mass, in good agreement with the exact values of
ÿ0:26200 hartrees and ÿ2:90330 hartrees. Compared
with the full-set calculations, the errors in the total
energy for ground and excited states of e�eÿe� are very
small, around ÿ0:0001 hartrees. We conclude that the
present method is one of the best PH methods for the
three-body coulomb problem.
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1 Introduction

The potential harmonics (PHs) are those hyperspherical
harmonics (HHs) that appear in the expansion of the
product of the potential and the dominant term
occurring in the expansion of the wavefunction. Fabre
de la Ripelle [1, 2, and the references therein] found that
these harmonics (or PHs) are the ones which contribute
most importantly to the wavefunction, and in some test
cases there is only a small loss in accuracy by using the
PH basis instead of the full HH basis. PHs are speci®c
linear combinations of HHs with the same global
angular momentum (K). In the simplest case, only one
PH is obtained for each value of K, and the degeneracy
of HHs at large K is very high; thus the PH method is
very e�cient in reducing the number of HHs used in the
expansion. This removes one of the main impediments
that has seriously hindered the HH technique from
further applications [1±4].

Several years ago, Fabre de la Ripelle et al. [4] pro-
posed a PH method which was believed to be able to
include e-e correlations into the basis e�ectively, and
showed that this PH method was the most accurate and
gave the best results in their test cases involving helium
and Hÿ. However, when they introduced their method,
Fabre de la Ripelle et al. [4] used a mathematical for-
malism which was only suitable for two-electron atomic
systems, such as helium and Hÿ where the mass of the
nucleus was treated as in®nite.

The main purpose of the present paper is to establish a
PH method that is suitable for the general three-body
coulomb systems and at the same time, can match the
performance of the new PH method of Fabre de la
Ripelle et al. [4] in the particular case of He�Hÿ�. In our
method, two sets of orthonormal PH basis functions are
constructed and used in the expansion of the wavefunc-
tion; analytic expressions for matrix elements with these
PH functions are derived. Finally the generalized Lagu-
erre function (GLF) expansion method, which was re-
cently developed by Deng and others [5±8], is used in the
solution of the coupled di�erential equations. Programs
based on this method have been successfully implemented
and the calculations for He atom and positronium ion
e�eÿe� have yielded very good results for the energy.

A detailed presentation of our method is given in the
next section, and the practical calculations are reported
in Sect. 3.

2 Theoretical method

2.1 Solution of the Schroedinger equation

The nonrelativistic Schroedinger equation for the gen-
eral three-body coulomb problem can be written as

ÿ
X3
i�1

r2
i

2mi
� V ÿ E

 !
W � 0 ; �1�

where V is the coulomb potential and mi is the mass of
particle i. Consider a system with two identical particles;
in particles we assume that particles 1 and 2 are
identical, and m1 � m2 � m.
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In the center-of-mass system, Eq. (1) has the form
[9, 10]

�ÿ1
2�r2

n �r2
n0 � � V ÿ E�W � 0 ; �2�

n � 1���
2
p �r1 ÿ r2�

n0 �
�������������������

M
2�M � 2�

s
�r1 � r2 ÿ 2r3� ; �3�

where we used the units m � �h � e � 1; M is the mass of
the unidentical particle; ri is the position vector of the
particle i; n and n0 are relative coordinate vectors.

For the S state �L � 0�; n and n0 can be expressed in
terms of hyperspherical coordinates by the relations

n1 � ÿq cos
p
4
ÿ a
2

� �
cos

k
2

n2 � q sin
p
4
ÿ a
2

� �
sin

k
2

n3 � 0

n01 � ÿq cos
p
4
ÿ a
2

� �
sin

k
2

n02 � ÿq sin
p
4
ÿ a
2

� �
cos

k
2

n03 � 0 ; �4�
where q�0 � q <1� is the hyperradial variable;
a�0 � a < p

2�, and k�0 � k < 2p� are two hyper-angles.
In these hyperspherical variables, Eq. (2) takes the

form

1

2

@2

@q2
� 5

q
@

@q
ÿ K2

q2

� �
� Z�X�

q
� E

� �
W � 0 ; �5�

where V � ÿ Z�X�
q ; X stands for the hyperangular

variables a, and k; K2 is the generalized scalar angular-
momentum operator and for L � 0,

K2 � ÿ4 @2

@a2
� 2 cot 2a

@

@a
� 1

sin2 a

@2

@k2

� �
: �6�

Now we expand W in terms of two sets of PH basis
functions, which are denoted by Y A

l �k; a� and Y B
l0 �k; a�

(the de®nitions and derivations about them are given in
Sect. 2.2):

W �
X

l

HA
l�q�Y A

l �k; a� �
X
l0

HB
l0 �q�Y B

l0 �k; a� : �7�

The number of PH functions for the ®rst set is denoted
as N1, and that for the second set is denoted as N2. We
assume N is the total number of PH functions; then
N � N1 � N2:Yl�k; a� are solutions (for the S states) of
the equation:

K2Yl�k; a� � 2l�2l� 4�Yl�k; a��l � 0; 1; 2; � � ��
� K�K � 4�Yl�k; a��K � 2l� �8�

and thus can be expressed in terms of the usual Wigner D
functions �Dl

mm0 �a; b; c��. Equation (7) can be written in
the matrix form:

W � YAHA � YBHB ; �9�
where YA and YB are N1- and N2-dimensional line
matrices respectively, whereas HA and HB are N1- and
N2-dimensional column matrices respectively. We fur-
ther let

Y � �YA; YB� �10�
and

H � HA

HB

� �
: �11�

Then Eq. (9) can be rewritten as:

W � YH ; �12�
where Y is the N -dimensional line matrix, and H is the
N -dimensional column matrix.

After substituting Eq. (12) into Eq. (5) and integrat-
ing out the hyperangular part of the wavefunction, we
can obtain a matrix equation:

d2

dq2
� 5

q
d

dq
ÿ K�K� 4�

q2
� 2

Z

q
� 2E

� �
H � 0 ; �13�

where K is N � N diagonal matrix, with the diagonal
elements being 2l for the preceding N1 elements and 2l0
for the following N2 elements; N is the number of PHs
used (as mentioned above); Z is N � N matrix,

Z � ZAA ZAB

ZBA ZBB

� �
: �14�

The matrix elements for ZAA; ZAB; ZBA; ZBB are the
following angular integration respectively:

ZAlAl0 � hY A
l jZ�X�jY A

l0 i ; �15�
ZBlBl0 � hY B

l jZ�X�jY B
l0 i ; �16�

ZAlBl0 � hY A
l jZ�X�jY B

l0 i ; �17�
ZBlAl0 � hY B

l jZ�X�jY A
l0 i ; �18�

and the analytic expressions for them are derived out in
Sect. 2.3. Now we let

H � eÿbqU �19�
and

b2 � ÿ2E : �20�
Substitution of Eq. (19) into Eq. (13) yields

d2

dq2
� 5

q
ÿ 2b

� �
d

dq
ÿ K�K� 4�

q2
� 2Zÿ 5b

q

� �
U � 0 :

�21�
We de®ne

R � 2bq : �22�
Then we have

d2

dR2
� 5

R
ÿ 1

� �
d

dR
ÿ K�K� 4�

R2
�

Z
b ÿ 5

2

R

" #
U � 0 : �23�
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We expand U�R� in terms of generalized Laguerre
functions (GLF) [5, 6]

U�R� �
X1
n�0

CnLa
n�R� �we choose a � 4� ; �24�

where Cn is the column matrix of expansion coe�cients,
and La

n�R� is the generalized Laguerre function.
By using the following properties of the GLF,

d2

dR2
� 5

R
ÿ 1

� �
d

dR
� n

R

� �
L4n�R� � 0

RL4n � ÿ�n� 4�L4nÿ1 � �2n� 5�L4n ÿ �n� 1�L4n�1 ; �25�
we can ®nally get the recurrence relation of the
expansion coe�cients:

a�Cn�Cn � a�Cn�1�Cn�1 � a�Cnÿ1�Cnÿ1 � 0 �26�
where

a�Cn� � K�K� 4� ÿ �2n� 5� Z

b
ÿ nÿ 5

2

� �
a�Cn�1� � �n� 5� Z

b
ÿ nÿ 7

2

� �
a�Cnÿ1� � n

Z

b
ÿ nÿ 3

2

� �
: �27�

From Eq. (26), a generalized eigenvalue equation about
b can be easily obtained,

AC � bBC ; �28�
in which

An;n � ÿ�2n� 5�Z
An;n�1 � �n� 5�Z
An;nÿ1 � nZ ; �29�

Bn;n � ÿK�K� 4� ÿ �2n� 5� n� 5

2

� �
Bn;n�1 � �n� 5� n� 7

2

� �
Bn;nÿ1 � n n� 3

2

� �
; �30�

�n � 0; 1; � � � ; and the other elements of A and B are
zero), and C is a M-dimensional column matrix; A, B are
M �M square matrices; M � N (the number of PHs)
� NGLF (the number of GLF). Equation (28) is solved
numerically and thereby the wavefunction and the
energy eigenvalue are obtained.

2.2 PH basis sets

The two sets of PH basis functions, Y A
l and Y B

l0 [or
Y A

l �k; a� and Y B
l0 �k; a��, used in the expansion of the

wavefunction in Eq. (7) are obtained in the following
way.

The interaction potential for the three-body coulomb
systems considered in this paper is written as

V � ÿ Z�X�
q
� ÿ z

r13
ÿ z

r23
� 1

r12
: �31�

Here, z is the nuclear charge and rij is the distance
between particles, which can be expressed with the
hyperspherical coordinates [10]:

rij � q
����������������������������������������������������
kij�1� sin a cos�k� xij��

q
; �32�

where kij � 1; M�1
2M ; M�1

2M and xij � 0; x; ÿx with
x � arccos ÿ1M�1, for ij � 12; 23, 13 respectively.

Based on Eq.(32), the following expansion formula
can be obtained [10]:

1

rij
� 16

qp
��������
2jij

p X1
l�0

�ÿ1�l�l� 1�
�2l� 3��2l� 1�Xl

m�ÿl

�ÿ1�lÿm
2 exp�ÿixijm�D

l
2
m
2ÿm

2
�2k; 2a; 0� ; �33�

where Dl
mm0 �a; b; c� are usual Wigner D functions.

From Eq. (33), we de®ne the PH function for the
interparticle potential 1

rij
as

Y 0l�ij� �
Xl

m�ÿl

�ÿ1�lÿm
2 exp�ÿixijm�D

l
2
m
2ÿm

2
�2k; 2a; 0� : �34�

Then

1

rij
� 16

qp
��������
2jij

p X1
l�0

�ÿ1�l�l� 1�
�2l� 3��2l� 1� Y

0
l�ij� : �35�

The Pauli exclusion principle requires that the wave-
function be antisymmetric under interchange of the two
identical particles, and thus we can obtain two sets of
PH functions for the 1S state from Eq. (34), which satisfy
the Pauli principle:

Y 0al � Y 0l�12� ; �36�

Y 0bl � Y 0l�13� 23� : �37�
Here we let

Y 0l�13� 23� � Y 0l�13� � Y 0l�23� : �38�
By using Eq. (34) we can further obtain

Y 0l�12� �
Xl

m�ÿl

�ÿ1�lÿm
2 D

l
2
m
2ÿm

2
�2k; 2a; 0� ; �39�

Y 0l�13� 23� �
Xl

m�ÿl

�ÿ1�lÿm
2 2 cosxmD

l
2
m
2ÿm

2
�2k; 2a; 0� : �40�

On the basis of Eq. (36) and Eq. (37), we have con-
structed another two sets of PH bases, which are
orthogonal to each other, by the method of Gram-
Schmidt:

Y 0Al � Y 0l�12� ; �41�
Y 0Bl � alY 0l�12� � Y 0l�13� 23�
�l 6� 0;1 and for the particular case M � 1; l 6� 0; odd�

�42�
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with

al � ÿ
2C1

l�cosx�
l� 1

; �43�

where C1
l�cosx� is the Gegenbauer polynomial. Y 0Al and

Y 0Bl can be easily normalized by the angular integration
procedure and ®nally we obtain the two sets of
orthonormal PH bases:

Y A
l � pÿ

3
2Y 0Al ; �44�

Y B
l �

Y 0Bl

N B
l

�45�

with

�N B
l �2 � 2p3 1� C1

l�cos 2x�
l� 1

ÿ 2
C1

l�cosx�
l� 1

" #28<:
9=; :

�46�

2.3 Analytic expressions for Z-matrix elements

Firstly, let us consider some angular integration fromula
with three PH basis functions. Let

I1�l; l0; l00�
� Y 0l�13� 23� Y 0l00 �13� 23�

��� ���Y 0l0 �13� 23�
D E

; �47�

with the integration being taken over

dX � p2

4
sin 2adkd�2a� : �48�

Substitution of Eq. (40) into Eq. (47) leads to

I1�l; l0; l00�

�
Xl

m�ÿl

Xl0
m0�ÿl0

Xl00
m00�ÿl00

�ÿ1�lÿm�l0ÿm0�l00ÿm00
2

8 cosxm cosxm0 cosxm00 D
l
2
m
2ÿm

2
D

l00
2

m00
2ÿm00

2

���� ����Dl0
2
m0
2ÿm0

2

� �
: �49�

According to formula [11]

D
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2
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m0
1
2

D
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2
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2

m0
2
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�
Xl1�l2

l3�jl1ÿl2j
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2
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2
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1
�m0
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2
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2
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2
;
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l3
2
;
m1 � m2
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��� ��
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2
;
m01
2
;
l2
2
;
m02
2

l3
2
;
m01 � m02

2

���� ��
; �50�

where the �l;m; l0;m0jl00;m00� are the Clebsch-Gordan
coe�cients of su (2) group, and

D
l1
2

m1
2

m0
1
2

D
l2
2

m2
2

m0
2
2

�����
+*
� dl1l2dm1m2dm0

1
m0
2

p3

l1 � 1
; �51�

we have

D
l3
2

m3
2

m0
3
2

D
l1
2

m1
2

m0
1
2

�����
����� D

l2
2

m2
2

m0
2
2

* +

� l1
2
;
m1
2
;
l2
2
;
m2
2

l3
2
;
m3
2

��� ��
� l1

2
;
m01
2
;
l2
2
;
m02
2

l3
2
;
m03
2

���� ��
p3

l3 � 1
: �52�

Thus, Eq. (49) can be further written as

I1�l; l0; l00� � 8p3�ÿ1�l�l0�l00

l� 1Xl

m�ÿl

Xl0
m0�ÿl0

cosxm cosxm0 cosx�mÿ m0�

l0

2
;
m0

2
;
l00

2
;
mÿ m0

2

l
2
;
m
2

��� �2�
: �53�

Similarly we achieve

I2�l; l0; l00� � Y 0l�13� 23� Y 0l00 �12�
��� ��� Y 0l0 �12�

D E
� 2p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl
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m0�ÿl0

cosxm
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2
;
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2
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l00

2
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2

l
2
;
m
2

���� �2

; �54�

I3�l; l0; l00� � Y 0l�12� Y 0l00 �13� 23�
��� ���Y 0u0 �12�D E

� 2p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl

Xl0
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2
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2
;
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2
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��� l
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;
m
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� �2

; �55�

I4�l; l0; l00� � Y 0l�12� Y 0l0 �13� 23�
��� ���Y 0u00 �12�D E

� 2p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl

Xl0
m0�ÿl0

cosxm0

l0

2
;
m0

2
;
l00

2
;
mÿ m0

2

��� l
2
;
m
2

� �2

; �56�

I5�l; l0; l00� � Y 0l�12� Y 0l0 �13� 23�
��� ���Y 0u00 �13� 23�

D E
� 4p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl

Xl0
m0�ÿl0

cosxm0 cosx�mÿ m0�
l0

2
;
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2
;
l00

2
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��� l
2
;
m
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� �2

; �57�
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I6�l; l0; l00� � Y 0l�13� 23� Y 0l0 �13� 23�
��� ���Y 0u00 �12�D E

� 4p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl

Xl0
m0�ÿl0

cosxm cosxm0

l0

2
;
m0

2
;
l00

2
;
mÿ m0

2

��� l
2
;
m
2

� �2

; �58�

I7�l; l0; l00� � Y 0l�13� 23� Y 0l0 �12�
��� ���Y 0u00 �13� 23�

D E
� 4p3�ÿ1�l�l0�l00

l� 1Xl

m�ÿl

Xl0
m0�ÿl0

cosxm cosx�mÿ m0�
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2
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m0

2
;
l00

2
;
mÿ m0

2

��� l
2
;
m
2

� �2

; �59�

I8�l; l0; l00� � Y 0l�12� Y 0l0 �12�
��� ���Y 0u00 �12�D E

� p3�ÿ1�l�l0�l00

l� 1

Xl

m�ÿl

Xl0
m0�ÿl0

l0

2
;
m0

2
;
l00

2
;
mÿ m0

2

��� l
2
;
m
2

� �2

: �60�

Now, let us consider the Z-matrix. As mentioned in Sect.

2.1, Z is N � N matrix:
ZAA ZAB

ZBA ZBB

� �
and the matrix

elements for ZAA; ZAB; ZBA; ZBB are the following
angular integrations respectively:

ZAlAl0 � hY A
l jZ�X�jY A

l0 i ; �61�
ZBlBl0 � hY B

l jZ�X�jY B
l0 i ; �62�

ZAlBl0 � hY A
l jZ�X�jY B

l0 i ; �63�
ZBlAl0 � hY B

l jZ�X�jY A
l0 i : �64�

Here, the integration is taken over dX [See Eq. (48)].
From Eq. (31) and Eq. (35), we get

Z�X� �
X1
l�0

Bl a�z; M�Y 0l�13� 23� ÿ 1���
2
p Y 0l�12�

� �
; �65�

where

Bl � 16�ÿ1�l�l� 1�
p�2l� 3��2l� 1� ; �66�

a�z; M� � z

�������������
M

M � 1

r
: �67�

Based on the integration formula in Eqs. (53)±(60), the
explicit expressions for Eqs. (61)±(64) can be derived,
and ®nally we obtain:

ZAlAl0 � 1

p3
Xl�l0

l00�jlÿl0 j
Bl00

�
a�z; M�I3�l; l0; l00�

ÿ 1���
2
p I8�l; l0; l00�

�
; �68�

ZBlBl0 � 1

N B
l N B

l0

Xl�l0

l00�jlÿl0 j
Bl00

�
a�z; M�I1�l; l0; l00�

ÿ al0���
2
p I2�l; l0; l00�

� alal0a�z; M�I3�l; l0; l00�
ÿ al0���

2
p I4�l; l0; l00� � ala�z; M�I5�l; l0; l00�

ÿ 1���
2
p I6�l; l0; l00� � al0a�z; M�I7�l; l0; l00�

ÿ alal0���
2
p I8�l; l0; l00�

�
; �69�

ZAlBl0 � 1

p
3
2N B

l0

Xl�l0

l00�jlÿl0 j
Bl00

�
a�z; M�I5�l; l0; l00�

ÿ 1���
2
p I4�l; l0; l00� � al0a�z; M�I3�l; l0; l00�

ÿ al0���
2
p I8�l; l0; l00�

�
: �70�

Additionally, by making use of the symmetry of the
Z-matrix, we obtain

ZBl0Al � ZAlBl0 : �71�

3 Results and discussion

We have performed practical calculations on some three-
body coulomb systems with the method described above.
All calculations were carried out on a 4D/25 Personal
Iris Silicon Graphics workstation in our laboratory. The
programs were written by us.

Some of our calculational results at di�erent lm are
summarized in Tables 1±4, where l is the quantum
number used to denote the PH basis sets in Sect. 2 and
lm is the maximum value of it, and we have lm � Km

2 [see
Eq. (8), Km is the maximum global angular momentum].
The unit of energy we used is Eh, which is the abbre-
viation for the hartree and 1 Eh � 27:2116eV .

Now consider Table 1, where we present our calcu-
lated results for the ground and the ®rst excited states of
the He atom along with the results obtained by Fabre de
la Ripelle et al. with their PH method with e-e correla-
tions [4]. In both methods, the mass of the nucleus is
treated as in®nite. The left two columns in the table are
for the ground state, and the right two are for the ®rst
excited state. The accurate variational results are also
placed in the table for comparison. To achieve conver-
gence, we retain ®ve generalized Laguerre functions for
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the ground-state calculations and ten for the ®rst excited
state calculations. One can see from Table 1 that, for the
ground state, our results are almost the same as those
from [4], and for the ®rst excited state, the two sets of
results are very similar to each other, particularly at
lower lm. The comparison validates our method, and we
conclude that our method is of the same accuracy as the
PH method with e-e correlations of Fabre et al. [4] for
the case of helium with in®nite nuclear mass.

We report our calculations on the ground and the
®rst excited states (21S state) of helium atom with ®nite
nuclear mass �M � 7:2942988� 103me� in Table 2 and
Table 3 respectively. The convergency pattern of energy
eigen values versus lm and NGLF (the number of gen-
eralized Laguerre functions) is displayed. From Table 2
we see that the ground-state energy eigenvalues for
NGLF � 6 are almost the same as those for NGLF � 7,
which indicates fast and satisfactory convergence for the
Laguerre expansion; the eigenvalues increase steadily
with lm and at lm � 70 and with seven GLFs, we get an
energy eigenvalue of ÿ2:90300Eh, which is in excellent
agreement with the exact value of ÿ2:90330Eh, reported
by Morgan III et al. [15]. On the other hand, Table 3
shows us that, compared with the ground-state, more
GLFs are required to obtain good convergence for the
excited state. At lm � 70 and with ten GLFs, we get an
energy value of ÿ2:14127Eh, which is very near Drake's
result of ÿ2:14568Eh [16].

Our energy results for the ground and the ®rst excited
states of e�eÿe� are displayed in Table 4. We notice that
the convergence pattern is rather good, and compared
with our calculations on He mentioned above, more
GLFs are required to obtain good convergence. For the
ground state, excellent convergence is obtained when the
number of GLFs is extended to ten, and at lm � 65 and
with ten GLFs, we obtain a ground-state energy of
ÿ0:26181Eh, which is in good agreement with the exact
value of ÿ0:26200Eh, which was obtained by Frost
et al.[17] with the variational method. The convergence
for the ®rst excited state is good too, particularly at
lower lm and at lm � 65 and with ten GLFs, we get a
energy value of ÿ0:24175Eh, but we could not ®nd any
results in the literature for this value.

To make a clear comparison, our results for e�eÿe�
using the full HH basis set (FS) for each lm, i.e., all
harmonics for l � lm are retained, are also included in
Table 4. These results are obtained by the HH-GLF
method [7], which was shown to be as accurate as the
best available hyperspherical harmonic method. The
errors between the PH results and the FS (full HH set)
ones are listed in the last column of Table 4. We can see
that the errors are very small, at around ÿ0:0001Eh for
both the ground and excited states. Furthermore, the
error for the ground-state almost remains constant with
the increase of lm, and the error for the ®rst excited state
decreases with lm. This suggests that the error mainly
comes from the neglect of harmonics at lower lm. The
PH calculations performed by Haftel and Mandelzweig

Table 1. Comparison of energy eigenvalues �Eh� of He atom with
in®nite nuclear mass calculated by our method with those obtained
by Fabre

lam Fabreb usc Fabreb usd

(ground-state) (21S state)

8 ÿ2:88730 ÿ2:88732 ÿ1:94728 ÿ1:94729
10 ÿ2:89333 ÿ2:89334 ÿ1:99412 ÿ1:99421
14 ÿ2:89876 ÿ2:89876 ÿ2:05111 ÿ2:05113
16 ÿ2:90006 ÿ2:90006 ÿ2:06896 ÿ2:06898
20 ÿ2:90152 ÿ2:90152 ÿ2:09313 ÿ2:09316
24 ÿ2:90226 ÿ2:90226 ÿ2:10815 ÿ2:10816
28 ÿ2:90267 ÿ2:90267 ÿ2:11799 ÿ2:11769
32 ÿ2:90291 ÿ2:90291 ÿ2:12471 ÿ2:12461
36 ÿ2:90307 ÿ2:90307 ÿ2:12946 ÿ2:12923
Variationale ÿ2:90372 ÿ2:14597
a lm � Km

2 , and Km is the maximum global angular momentum
b Results calculated by Fabre de la Ripelle with their PH method [4]
c Our calculated results with ®ve generalized Laguerre functions
d Our calculated results with ten generalized Laguerre functions
e From Refs. [12±14]

Table 2. Energy eigenvalues of the ground-state for He with ®nite
nuclear mass �M � 7:2942988� 103��Eh�
NGLFb

lam 1 3 6 7

4 ÿ2:82896 ÿ2:84959 ÿ2:84960 ÿ2:84960
10 ÿ2:85477 ÿ2:89276 ÿ2:89294 ÿ2:89294
16 ÿ2:85789 ÿ2:89933 ÿ2:89965 ÿ2:89965
24 ÿ2:85882 ÿ2:90144 ÿ2:90185 ÿ2:90185
36 ÿ2:85914 ÿ2:90221 ÿ2:90265 ÿ2:90265
50 ÿ2:85924 ÿ2:90244 ÿ2:90290 ÿ2:90290
70 ÿ2:85928 ÿ2:90253 ÿ2:90299 ÿ2:90300
Exact valuec ÿ2:90330
a lm � Km

2 , and Km is the maximum global angular momentum
b The number of generalized Laguerre functions
c From Ref. [15]

Table 3. Energy eigenvalues of
the 21S state for He with ®nite
nuclear mass �M � 7:2942988
�103��Eh�

a lm � Km
2
, and Km is the max-

imum global angular
momentum
b The number of generalized
Laguerre functions
c From Ref. [16]

NGLFb

lam 1 3 5 7 9 10

4 ÿ0:52088 ÿ1:76320 ÿ1:77083 ÿ1:77084 ÿ1:77083 ÿ1:77083
10 ÿ0:54081 ÿ1:91990 ÿ1:99130 ÿ1:99389 ÿ1:99391 ÿ1:99392
16 ÿ0:54445 ÿ1:95001 ÿ2:05632 ÿ2:06817 ÿ2:06869 ÿ2:06869
24 ÿ0:54565 ÿ1:96043 ÿ2:08354 ÿ2:10518 ÿ2:10773 ÿ2:10785
36 ÿ0:54610 ÿ1:96437 ÿ2:09494 ÿ2:12299 ÿ2:12838 ÿ2:12893
50 ÿ0:54623 ÿ1:96558 ÿ2:09864 ÿ2:12924 ÿ2:13631 ÿ2:13727
70 ÿ0:54628 ÿ1:96607 ÿ2:10022 ÿ2:13202 ÿ2:14001 ÿ2:14127
Exact valuec ÿ2:14568
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[3] produced the ground-state energy of ÿ0:22101Eh at
Km � 12 for the e�eÿe�, which has a huge error com-
pared with the full set result of ÿ0:25040Eh [3]. In con-
trast to this, our PH calculations for e�eÿe� are fairly
accurate, which indicates that, besides the atomic sys-
tems, the PH method can also be very e�cient for cou-
lomb systems with particles of comparable mass ratios.

4 Conclusions

Our calculations indicate that the PH method provides
an e�ective means to reduce the degeneracy of the
hyperspherical harmonics. It yields very good results for
the three-body coulomb systems. The present work also
provides us with a good starting point to deal with
systems with more particles.
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Table 4. Energy eigenvalues of
e�eÿe��Eh�

a lm � Km
2 , and Km is the max-

imum global angular
momentum
b The number of generalized
Laguerre functions
c The full-set calculational re-
sults with 10 generalized
Laguerre functions
d The di�erence between the PH
results and full-set ones
e From Ref. [17]

NGLFb

lam 3 5 7 9 10 FSc errord

For the ground-state
5 ÿ0:24660 ÿ0:24661 ÿ0:24661 ÿ0:24661 ÿ0:24661 ÿ0:24671 ÿ0:00010
10 ÿ0:25615 ÿ0:25660 ÿ0:25660 ÿ0:25660 ÿ0:25660 ÿ0:25672 ÿ0:00012
14 ÿ0:25815 ÿ0:25901 ÿ0:25904 ÿ0:25904 ÿ0:25904 ÿ0:25916 ÿ0:00012
18 ÿ0:25897 ÿ0:26013 ÿ0:26019 ÿ0:26019 ÿ0:26019 ÿ0:26031 ÿ0:00012
24 ÿ0:25947 ÿ0:26086 ÿ0:26098 ÿ0:26099 ÿ0:26099 ÿ0:26111 ÿ0:00012
36 ÿ0:25977 ÿ0:26134 ÿ0:26153 ÿ0:26155 ÿ0:26155
50 ÿ0:25986 ÿ0:26149 ÿ0:26171 ÿ0:26174 ÿ0:26174
65 ÿ0:25989 ÿ0:26155 ÿ0:26178 ÿ0:26181 ÿ0:26181
Exact valuee ÿ0:26200
For the 21S state
5 ÿ0:17025 ÿ0:17374 ÿ0:17374 ÿ0:17374 ÿ0:17374 ÿ0:17387 ÿ0:00013
10 ÿ0:18694 ÿ0:20385 ÿ0:20508 ÿ0:20510 ÿ0:20510 ÿ0:20522 ÿ0:00012
14 ÿ0:19036 ÿ0:21326 ÿ0:21711 ÿ0:21734 ÿ0:21734 ÿ0:21743 ÿ0:00009
18 ÿ0:19176 ÿ0:21775 ÿ0:22403 ÿ0:22492 ÿ0:22495 ÿ0:22503 ÿ0:00008
24 ÿ0:19261 ÿ0:22074 ÿ0:22934 ÿ0:23149 ÿ0:23173 ÿ0:23179 ÿ0:00006
36 ÿ0:19313 ÿ0:22270 ÿ0:23327 ÿ0:23719 ÿ0:23802
50 ÿ0:19329 ÿ0:22333 ÿ0:23464 ÿ0:23942 ÿ0:24066
65 ÿ0:19335 ÿ0:22356 ÿ0:23515 ÿ0:24030 ÿ0:24175
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